Biased News and Voter Turnout

Rafayal Ahmed

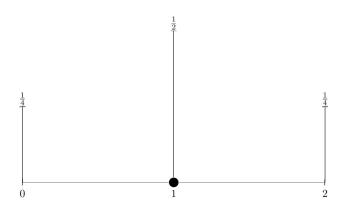
Why (and How) Does Disinformation Work?

- Traditional models of rational players do not allow for lies
- ▶ If receiver fully knows how information is biased, would simply disregard it
- ► However, this requires fully knowing the details of bias in the source
- Can also adjust for bias with knowledge of the "average" level of bias

Information Design

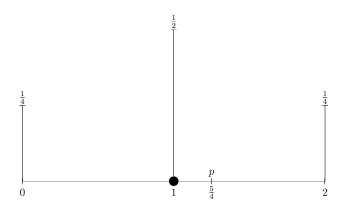
- ► The study of using information to change incentives (by changing beliefs)
- Sometimes called persuasion
- Seminal paper titled "Bayesian Persuasion" (Kamenica & Gentzkow 2011)
- ► So far focussed mostly on strategic (but truthful) information

Buyer-Seller Example: Prior Beliefs



- ▶ Three possible states (qualities): $Y \in \{0, 1, 2\}$
- $ightharpoonup \mathbb{P}[Y=0] = \frac{1}{4}; \mathbb{P}[Y=1] = \frac{1}{2}; \mathbb{P}[Y=2] = \frac{1}{4}$
- ▶ The prior $\mathbb{E}[Y] = 1$

The Decision Problem



- ▶ Three possible states (qualities): $Y \in \{0, 1, 2\}$
- $ightharpoonup \mathbb{P}[Y=0] = \frac{1}{4}; \mathbb{P}[Y=1] = \frac{1}{2}; \mathbb{P}[Y=2] = \frac{1}{4}$
- ▶ The prior $\mathbb{E}[Y] = 1$
- ▶ Buy if updated $\mathbb{E}[Y] \ge p = \frac{5}{4}$

Unbiased Information

- ▶ Three possible messages: $X \in \{B, M, G\}$
- The accuracy (informativeness) of the messages are captured by parameter $\theta \in [0,1]$

$$\mathbb{P}[X = B|Y = 0] = \frac{1+2\theta}{3}$$

$$\mathbb{P}[X = M|Y = 0] = \frac{1-\theta}{3}$$

$$\mathbb{P}[X = G|Y = 0] = \frac{1-\theta}{3}$$

- ▶ Analogous probabilities for X = M|Y = 1 and X = G|Y = 2
- \blacktriangleright Notice that $\theta=0$ means no information, $\theta=1$ means perfect information

Unbiased Information

- ▶ Three possible messages: $X \in \{B, M, G\}$
- For this example we just assume $\theta = \frac{4}{10} = 0.4$

$$\mathbb{P}[X = B|Y = 0] = \frac{1+2\theta}{3} = \frac{6}{10} = 60\%$$

$$\mathbb{P}[X = M|Y = 0] = \frac{1-\theta}{3} = \frac{2}{10} = 20\%$$

$$\mathbb{P}[X = G|Y = 0] = \frac{1-\theta}{3} = \frac{2}{10} = 20\%$$

▶ Analogous probabilities for X = M|Y = 1 and X = G|Y = 2

Unbiased Information

- ▶ Three possible messages: $X \in \{B, M, G\}$
- For this example we just assume $\theta = \frac{4}{10} = 0.4$

$$\mathbb{P}[X = B|Y = 0] = \frac{1+2\theta}{3} = \frac{6}{10} = 60\%$$

$$\mathbb{P}[X = M|Y = 0] = \frac{1-\theta}{3} = \frac{2}{10} = 20\%$$

$$\mathbb{P}[X = G|Y = 0] = \frac{1-\theta}{3} = \frac{2}{10} = 20\%$$

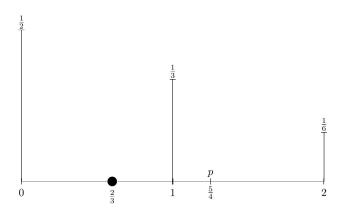
- ▶ Analogous probabilities for X = M|Y = 1 and X = G|Y = 2
- Importantly, this determines the frequency of the messages (consistent with prior beliefs):

$$P[X = B] = 30\%$$

 $P[X = M] = 40\%$
 $P[X = G] = 30\%$

Posterior Beliefs (Unbiased)

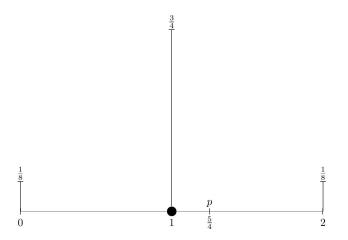
When the message is X = B (30% of the time):



 $ightharpoonup \mathbb{E}\left[Y|X=B\right]=\frac{2}{3} < p$, so buyer does not buy

Posterior Beliefs (Unbiased)

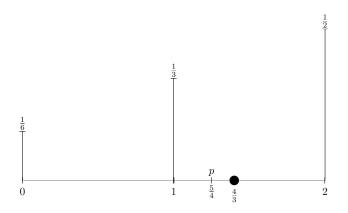
When the message is X = M (40% of the time):



 $ightharpoonup \mathbb{E}\left[Y|X=M\right]=1 < p$, so buyer does not buy

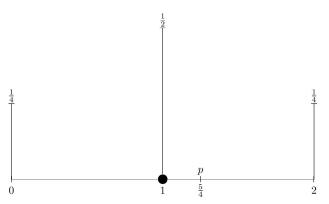
Posterior Beliefs (Unbiased)

When the message is X = G (30% of the time):



 $ightharpoonup \mathbb{E}[Y|X=G]=\frac{4}{3}>p$, so buyer buys only when X=G

Bayes Consistency



- On average, the posterior beliefs should equal the prior (unbiasedness)
- ► This is always true for correct Bayesian updating
- In our example, $\mathbb{E}_{X}\left[\mathbb{E}\left[Y|X\right]\right] = 0.3\left(\frac{2}{3}\right) + 0.4\left(1\right) + 0.3\left(\frac{4}{3}\right) = 1 = \mathbb{E}\left[Y\right]$

Biased Information

- ▶ Again, three possible messages: $X^b \in \{B, M, G\}$
- ▶ But this time, regardless of actual Y, messages are biased in favor of $X^b = G$

$$\mathbb{P}\left[X^{b} = G|Y = 2\right] = \frac{6}{10} + b$$

$$\mathbb{P}\left[X^{b} = B|Y = 2\right] = \frac{2}{10} - \frac{b}{2}$$

$$\mathbb{P}\left[X^{b} = M|Y = 2\right] = \frac{2}{10} - \frac{b}{2}$$

- Similarly, $\mathbb{P}\left[X^b = G|Y = 0\right] = \frac{2}{10} + b$; $\mathbb{P}\left[X^b = G|Y = 1\right] = \frac{2}{10} + b$
- ► And $\mathbb{P}\left[X^b = B|Y = 0\right] = \frac{6}{10} \frac{b}{2};$ $\mathbb{P}\left[X^b = M|Y = 1\right] = \frac{6}{10} - \frac{b}{2}$

Biased Information

- For this example, we choose $b = \frac{1}{6}$
- Bias distorts the frequency of the three messages:
- Unbiased:

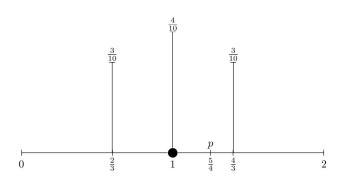
$$P[X = B] = 30\%$$

 $P[X = M] = 40\%$
 $P[X = G] = 30\%$

▶ Biased with $b = \frac{1}{6}$:

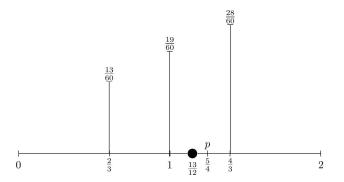
$$\mathbb{P}[X = B] = \frac{13}{60} \approx 22\%$$
 $\mathbb{P}[X = M] = \frac{19}{60} \approx 31\%$
 $\mathbb{P}[X = G] = \frac{28}{60} \approx 47\%$

Distribution of Posterior Expectation (Unbiased)



- ► For unbiased information.
 - ▶ 30% of the time, X = B and $\mathbb{E}[Y|X = B] = \frac{2}{3} < p$
 - ▶ 40% of the time, X = M and $\mathbb{E}[Y|X = M] = 1 < p$
 - ▶ 30% of the time, X = G and $\mathbb{E}[Y|X = G] = \frac{4}{3} > p$

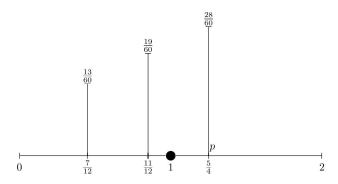
Distribution of Posterior Expectation (Biased)



► For biased information (naively accepted),

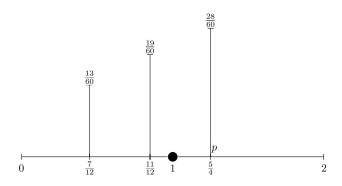
$$\mathbb{E}_{X^b} \left[\hat{\mathbb{E}} \left[Y | X^b \right] \right] = \frac{13}{60} \left(\frac{2}{3} \right) + \frac{19}{60} (1) + \frac{28}{60} \left(\frac{4}{3} \right)$$
$$= \frac{13}{12} = 1 + \frac{1}{12}$$

Distribution of Posterior Expectation (Adjusted)



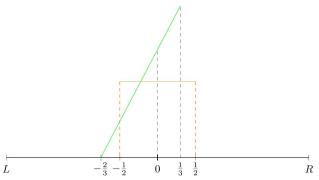
- The buyer adjusts for the bias by shifting posterior beliefs
- Adjusted $\widetilde{\mathbb{E}}\left[Y|X^b=G\right]=\frac{4}{3}-\frac{1}{12}=\frac{5}{4}$, and similarly for $X^b=B$ and $X^b=G$
- Now, about 47% of the time, $X^b = G$ and $\tilde{\mathbb{E}}\left[Y|X^b = G\right] = p$
- ▶ The sale happens 47% of the time as opposed to 30%

Distribution of Posterior Expectation (Adjusted)



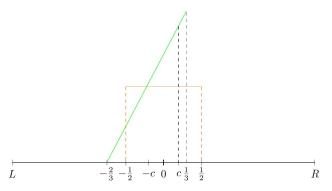
- ▶ The sale happens 47% of the time as opposed to 30%
- Now notice that we chose the bias level $b = \frac{1}{6}$ very carefully
- ▶ If $b > \frac{1}{6}$ then even after seeing $X^b = G$, $\mathbb{E}\left[Y|X^b = G\right] < p$, and the buyer *never buys*.
- This suggests a tradeoff for introducing bias.

Voter Turnout Example



- Voters choose a party based on their perceived (moral/psychological) benefit, and cost, of voting
- ▶ Consider a uniform and a triangular distribution of voters
- $ightharpoonup f_U(x)=1$ over $\left[-\frac{1}{2},\frac{1}{2}\right]$, and $f_T(x)=2\left(x+\frac{2}{3}\right)$ over $\left[-\frac{2}{3},\frac{1}{3}\right]$
- ▶ With the uniform (unbiased) distribution, mass of $\frac{1}{2}$ votes for the R party, whereas with the triangular distribution, $\frac{5}{9} > \frac{1}{2}$ votes for the R party.

Voter Turnout Example



- ► Consider a uniform and a triangular distribution of voters
- ▶ $f_U(x) = 1$ over $\left[-\frac{1}{2}, \frac{1}{2}\right]$, and $f_T(x) = 2\left(x + \frac{2}{3}\right)$ over $\left[-\frac{2}{3}, \frac{1}{3}\right]$
- Now consider a voter with cost *c* of voting, so only votes if perceived benefit is greater than *c*.
- When c is high enough (threshold value of 0.122), bias hurts the R party, and benefits the L party.